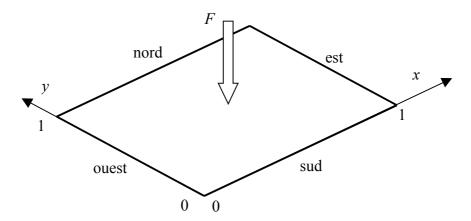

Université du Sud Toulon - Var ISITV

Différences Finies T.D. n°4

- I- On veut résoudre l'équation de Laplace bidimensionnelle $\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} = \alpha$ dans un carré de côté 1, avec des conditions de Dirichlet sur les quatre frontières.
 - a. On utilise dans un premier temps une résolution par différences finies sur un domaine à 4 mailles (N = 3):

$$\Delta x_1 = \Delta x_2 = h$$


avec les conditions aux limites $f(0,x_2) = f(1,x_2) = f(x_1,0) = f(x_1,1) = -2$.

Ecrire le schéma au différences finies associé ($M\vec{X} = \vec{C}$), en remplaçant les dérivées par des différences centrées.

- b. Déterminer la forme de la matrice M dans le cas où N = 5.
- c. Déterminer la forme de la matrice *M* dans le cas général.
- II- On considère une plaque carrée, de 1 mètre de côté, sur laquelle s'exerce un flux de chaleur *F* constant. L'équation régissant la température dans la plaque est alors l'équation de la chaleur en bidimensionnel stationnaire :

$$\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + F = 0 \qquad \lambda = 100W/(m^\circ K) \text{ conductivit\'e thermique}$$

On supposera que la température est fixée sur chacun des côtés du carré (nord, ouest, sud, est), la température des coins étant alors la moyenne de la température des côtés correspondant.

- a. Ecrire le schéma au différences finies associé ($M\vec{X} = \vec{C}$), en remplaçant les dérivées par des différences centrées, pour un maillage où N=20, en tenant compte des conditions aux limites.
- b. Ecrire un programme Matlab permettant de résoudre l'équation matricielle obtenue.
- c. Résoudre l'équation dans les cas suivants :

T _{sud} (°K)	T _{est} (°K)	T _{nord} (°K)	T _{ouest} (°K)	$F(W/m^3)$
300	300	300	300	1000
300	305	300	305	1000
300	301	302	303	1000
300	310	300	300	1000
300	300	300	295	10000

d. Calculer les flux de chaleur aux côtés.